Фотоный звездолёт

ФОТОННАЯ РАКЕТА

Сообщение Ивенс » 11 дек 2011, 22:46

ФОТОННАЯ РАКЕТА

В.П. Будраков и
Ю.И. Даниволов

РАКЕТЫ БУДУЩЕГО

1980 г.
Москва, Атомиздат
Стремительные темпы развития авиационной и ракетно-космической техники вынуждают с еще большей быстротой развивать научные дисциплины, обеспечивающие успех создания новых летательных аппаратов и их силовых установок.
"Современное состояние двигателестроения, наряду с развитием тепловых двигателей уже известных типов, настоятельно требует расширения научно-исследовательских работ в целях выявления возможных новых типов эффективных теплосиловых установок"*, - эта мысль, высказанная замечательным советским ученым более трех десятилетний тому назад, сохраняет всю свою актуальность и в наши дни, когда начинаются исследования фотонных ракет. Речь идет о профессоре В. К. Кошкине - известном педагоге, воспитавшем не одно поколение советских ученых.

* Двигатели со свободно движущимися поршнями в теплосиловых установках / В.к. Кошкин, Б.Р. Левин, И. Н. Кутырин и д. М.: Маггиз, 1957.

В. К. Кошкин внес огромный личный вклад в развитие таких научных дисциплин, как термодинамика, теплопередача, двигателестроение. Развитие этих фундаментальных дисциплин диктовалось применением различных типов двигателей для летательных аппаратов, а двигателей на веку профессора В. К. Кошкина сменилось немало: паровые*, поршневые, бензиновые и дизельные, свободнопоршневые, воздушно-реактивные, жидкостные ракетные комбинированные, ядерные, плазменные, ионные...
И вот наступила очередь фотонного. Новые проблемы, новые "неразрешимые" трудности термодинамического описания, совершенно фантастические энергетические процессы.
Большинство описаний гипотетических тяговых систем для обеспечения межзвездных полетов посвящено фотонным ракетам, тяга которых создается за счет истечения квантов электромагнитного излучения. В идеальном случае, когда вся мощность двигателя переходит в направленное излучение, тяга (в ньютонах) будет равна этой мощности (в киловаттах), умноженной на коэффициент 3.3х10-6, и не будет зависеть ни от длины волны излучения, ни от типа его источника.

* Напомним, что первый в мире авиационный двигатель, установленный на самолете А. Ф. Можайского, было паровым. Изучение свойства и принципов работы паровых машин входит в программу авиационных вузов подобно тому, как обучение морскому делу начинается с парусных судов.

Очевидно, что даже карманный электрический фонарик может называться миниатюрном фотонным двигателем. Мощные газосветовые лампы, освещающие улицы и площади, а особенно лампы типа "Сириус", развивают уже ощутимую тягу. Но подобные устройства, к сожалению, для сверхдальних полетов непригодны из-за весьма тяжелых энергетических источников. Даже идеальная реакция полной аннигиляции вещества и антивещества, которая обеспечивает наивысшее выделение энергии, так как в ней превращается вся масса исходных продуктов, и та обеспечивает массовую отдачу, равную всего 23%.
Многие предпосылки и расчеты, касающиеся межзвездных полетов, делались на основе представлений, почерпнутых из ракетной техники сегодняшнего дня. Предполагалось, что космическая среда в тяговых системах использоваться не может из-за чрезвычайной разреженности, что все необходимые для создания тяги массоэнергетические ресурсы (а для идеальной фотонной тяговой системы запас массы и энергии - одно и то же) должны размещаться перед полетом на борту летательного аппарата. Такое предположение рождало массу неразрешимых по современным представлениям проблем. Получение и хранение антивещества, организация аннигиляционного процесса, фокусировка фотонов - это еще далеко не полный их перечень.
Вот почему многие исследователи проблемы межзвездных полетов стали склонятся к мысли о необходимости использования прямоточного принципа создания тяги и для этого случая.
Рассмотренный в предыдущей главе термоядерный прямоточный двигатель принципиально пригоден и для межзвездных полетов, так как отсутствие бортовых запасов массы и энергии снимает ограничение на дальность полета. По современным данным плотность межзвездного водорода значительно меньше, чем межпланетного, и равна 2х10-21 кг/м3 (на 1 см3 приходится только один атом!). Следовательно, при скорости полета 100 км/с тяга двигателя окажется равной всего лишь нескольким ньютонам. Не выполняется, таким образом, второе необходимое условие межзвездного полета - его продолжительность при малых ускорения, обеспечиваемых низкой тягой, будет значительно превышать продолжительность человеческой жизни. Вот почему такой двигатель будет пригоден, пожалуй, только для автоматических межзвездных зондов.
Еще одно обстоятельство. При постепенном ускорении летательного аппарата тяга двигателя рассматриваемого типа будет сначала возрастать из-за увеличения количества захватываемой массы, а затем по мере увеличения энергии набегавшего потока начинать падать. Дело в том, что при увеличении скорости полета соответственно увеличивается энергия захватываемых частиц и требуется отдавать все большую мощность на увеличение интенсивности магнитного поля. Очевидно, что энергия реактивной струи уменьшается. Если же магнитное поле не увеличивать (допусти, катушка постоянно работает на пределе своих возможностей), то тогда энергия и тяга струи уменьшатся из-за меньшего секундного расхода захватывающего массозаборником водорода. Естественно, что уменьшение и без того низкой тяги приведет к невозможности достижения ракетой значительных - но говоря уже об околосветовых - скоростей полета.
Вывод один - надо применять антивещество, так как только реакция аннигиляции может дать необходимый для достижения нужного эффекта энергетический выход.
Рассмотрим прежде всего возможность использования межзвездного антивещества. Ученые подсчитали, что среди обычного водорода может находиться примерно 0.5х10-7 часть антиврдорода или антигелия. Соединяясь с обычным веществом, эти частицы дадут возможность захватывать массозаборником 10-7 часть аннигиляционного горючего, каждый килограмм которого выделяет предельно возможную энергию 9х1013 кДж, что примерно в 1000 раз больше энергии, выделяемой при синтезе водорода. Существуют гипотезы, что в различных районах нашей Галактики, а тем более в межгалактическом пространстве имеются целые области, стоящие в основном из антивещества (предполагают даже, что имеются антизвезды и атигалактики!). Тем не менее эти гипотезы пока подтверждения не нашли, и нам остается констатировать "печальный" факт - доля антивещество во внешней среде слишком мала, чтобы дать сколько-нибудь ощутимый вклад в энергетический выход от термоядерной реакции.
Итак, на борту ракеты необходимо запасать антивещество, которое при достижении ею скорости полета 200-300 км/с с помощью термоядерного прямоточного двигателя следует использовать для получения "фотонной" тяги и дальнейшего разгона.

Рассмотрим сначала проблемы получения и хранения антивещества. Об этих проблемах мало сказать, что они далеки от разрешения. Современное состояние физики таково, что их не могут даже поставить на повестку дня. И тем не менее успехи современного физического эксперимента с каждым днем приближают нас к какой возможности. Начнем с того, что создание крупнейших ускорителей в Дубне и Серпухове позволило получить и исследовать свойства антипротона - ядра антиводорода, а затем и ядер антидейтерия и атигелия. Еще пока нет установок для получения плотных пучков этих "антиядер", но, когда они будут созданы, проблема получения упомянутых антиэлементов окажется, по-видимому, разрешимой. Дело в том, что оснастить полученные "антиядра" антиэлектронами (т.е. позитронами - частицами, равными по массе электронам, но имеющими положительный заряд) значительно проще. Позитроны научились уже не только получать, но и накапливать в значительных количествах в так называемых "накопительных кольцах" - кольцевых магнитных системах, напоминающих ускорители. Смешивая "антиядра" и позитроны, можно получить нейтральную плазму антивещества. Как известно, плазма при магнитной изоляции может продолжительное (по физическим понятиям) время не вступать в контакты со стенками камер. К сожалению, такое антивещество еще не может считаться пригодным для хранения на борту ракеты. Необходимо разработать процесс охлаждения вплоть до отвердевания, скажем, антидейтерия. Твердый антидейтерий обладает достаточной плотностью для того, чтобы его можно было разместить в межзвездной ракете. Кроме того, контейнеры для его хранения не нужны. Сферические или цилиндрические глыбы антидейтерия будут удерживаться вблизи корабля с помощью электростатических полей определенной формы при постоянном (динамическом) регулировании.
В настоящее время пока нет представления о том, каким способом подавать антивещество в зону реакции. Может быть, будет пригоден "простой" метод эрозии антивещества вследствие взаимодействия с ним потока вещества, захваченного массозаборником. Обсуждается и другой способ эрозии и разгона антивещества с помощью лазерной установки. Разгон необходим и для организации реакции аннигиляции, и для получения необходимого КПД преобразования энергии в тягу. Учеными было установлено, что доля "чистой" аннигиляции, т.е. перехода протонов и антипротонов непосредственно в излучение при энергии их взаимодействия 1.6 ГэВ, составляет 30% и растет при дальнейшем увеличении этой энергии. При взаимодействии "покоящихся", т.е. имеющих очень небольшую энергию, частиц и античастиц "чистой", или полной, аннигиляции нет совсем. Вместо этого протоны и антипротоны последовательно рождают пи-мезоны, затем мю-мезоны и наконец, электронно-позитронные пары, которые и завершают аннигиляцию, переходя в излучение. Отрицательные и положительные пи-мезоны ("элементарные" частицы , масса которых в 273 раза больше массы электрона) образую при этом на короткое время нейтральные пары - мезоатомы, которые не фокусируются магнитным полем. То же самое можно сказать и о мю-мезонах, и об электронно-позитронных парах.
В целом можно отметить, что расстояние, проходимое веществом и антивеществом в процессе аннигиляции и ускорения, будет равняться нескольким километрам, поэтому изображать фотонные двигатели с короткими камерами аннигиляции, как это нередко делают в популярных книгах, по-видимому, бессмысленно уже сейчас. Аннигиляция и ускорение квантовой струи (а точнее, квантового потока) должны происходить вне пределов корабля и взаимодействовать с ним только лишь посредством электромагнитных сил. Образование несфокусированных квантов электромагнитного излучения на промежуточных квантов электромагнитного излучения на промежуточных и завершающей стадиях аннигиляции требует создания фокусирующего устройства. В настоящее время хорошо изучен вопрос о возможности фокусирования электромагнитных излучений с помощью твердых поверхностей. Оказалось, что даже самый лучший отражатель коротковолнового светового излучения (фиолетовая область) видимого спектра - полированный алюминий - поглощает при длине волны 0.2 мкм около 60 % падающего потока. Серебряные зеркала для этой области спектра не годятся, так как поглощают 90% излучения.
Таким образом, зеркало оказывается чрезвычайно громоздкими, требует интенсивного охлаждения и, что самое главное, поглощает почти все падающее излучение. Были попытки рассматривать лазерные кристаллические системы. Поглощаемое в кристалле коротковолновое излучение преобразуется и высвечивается в виде когерентного (синхронного) излучения с большей длиной волны, благодаря чему его можно очень хорошо фокусировать. К сожалению, и эти весьма перспективные устройства непригодны из-за большой массы и сложности конструкции.
Наиболее перспективным (по современным представления) считается предложение о фокусировании квантов с помощью доскообразного электронного облака, удерживаемого тем же магнитным полем, которое обеспечивает работу электромагнитного массозаборника. При полете межзвездной ракеты это облако под действием встречного потока изгибается и принимает форму огромной параболы, создавая тем самым более благоприятные условия для использования в создании тяги несфокусированных квантов. Заметим, наконец, что электронное облако создается устройствами, аналогичными тому, которое направляет навстречу потоку электронный луч (писанный в предыдущей главе), обеспечивающий работу электромагнитного массозаборника*.

* В. П Бурдаков, Ю. И. Данилов. Внешние ресурсы и космонавтика. М. Атомиздар, 1976.

Представим теперь вся процедуру межзвездного полета. На околоземной орбите собран корабль, имеющий приемлемые даже по современным представления геометрические размеры. Диаметр массозаборника около 40 м, длина корабля не более 160 м. Сухая масса корабля находится в пределах 600-1200 т. Основные его элементы: массозаборник с магнитной и электронной фокусирующими системами; термоядерная энергоустановка проточного типа с электромагнитным движителем, твердая поверхность которого выпалена в виде расширяющегося сопла; система подачи и хранения антивещества; рабочие, производственные и жилые сферические отсеки с необходимой биологической защитой от излучений; системы ускорителей электронов; комплекс вспомогательных бортовых систем.
Старт корабля с орбиты ИСЗ происходит с помощью прямоточного термоядерного двигателя. На границе планетной системы - где-нибудь вблизи Нептуна или Плутона - корабль принимает на борт, т.е. подвешивает с помощью электростатических сил, необходимые запасы твердого антиводорода или антидейтерия, подготовленного расположенным там заводом по производству антивещества. После тщательной и всесторонней проверки корабля состоится его передача экипажу. Количество членов экипажа 20-50 человек, отобранных из группы людей, которые с момента рождения проходили специальную подготовку и наблюдались врачами. Возраст, знания и навыки экипажа должны обеспечивать возвращение через 60-70 лет ракетного времени, как минимум трех звездоплавателей. По земным часам это время будет соответствовать десяткам тысяч лет из-за эффектов, предсказываемых теорией относительности.
Старт корабля происходит за счет тяги термоядерного устройства. Сначала из сопла появляется бледно-фиолетовое свечение - это включается малый термоядерный реактор, потребляющий бортовые запасы дейтерия и трития. Корабль медленно разгоняется. При достижении скорости 50 км/с навстречу набегающему потоку начинает вытягиваться ярко-фиолетовое копье электронного луча. Через некоторое время вокруг раструба массозаборника появляется едва заметное свечение, и из сопла, постепенно удлиняясь, начинает истекать ослепительно-фиолетовая струя. Это включилось магнитное поле, и начал работать прямоточный термоядерный двигатель. Скорость возрастает. Впереди корабля ярко вспыхивают редкие зеленоватые звездочки - гибнут встречные микрометеориты. Значительно реже такие же звездочки вспыхивают по бокам корабля - это работает автоматическая круговая противометеорная лазерная защита. Корабль прощается с Солнечной системой.
Прошло уже несколько месяцев полета. Скорость достигла 200 км/с. Солнце уже трудно отличить от других ярких звезд. Еще и еще раз проверяются системы корабля и уточняется курс. Пора включать фотонный двигатель. Появляется все усиливающееся свечение в плоскости, пересекающей магнитную систему массозаборника перпендикулярно оси корабля, - заработали тангенциальные инжекторы электронов, формирующие электронное зеркало. По мере увеличения яркости свечения становится заметной огромная светящаяся чаша параболы, вершина которой совпадает с началом массозаборника, а изогнутые образующие простираются на многие десятки километров, как бы охватывая реактивную струю. Но вот струя стала удлиняться, на ней появились светящиеся пульсирующие узлы, а окружающая струю парабола вспыхнула ярко-фиолетовым пламенем. Это с помощью специального электростатического манипулятора один из многочисленных "ледовых" зарядов антивещества, хранящихся "в тени" сбоку летательного аппарата, переместился в цент массозаборного устройства и с помощью тех же электростатических сил стал прочно удерживаться в заданном положении. Форма и размеры этого заряда обеспечивают нужный режим работы тягового устройства. Поступающее в массозаборное устройство вещество окружающей среды обтекает заряд антивещества, соприкасается с ним, вызывает эрозию антивещества в результате местных аннигиляционных, электромагнитных и тепловых процессов и тем самым вовлекает антивещество в движущийся поток рабочего тела. В соответствии с эффектами теории относительности время, необходимое для полной аннигиляции вещества и антивещества, таково, что все процессы в реактивной струе занимают по протяженности несколько километров. Более того, эти процессы идут в несколько этапов, о которых уже говорилось ранее, поэтому сама реактивная струя напоминает сильно вытянутую струю работающего в атмосфере ракетного двигателя с характерными светящимися пережатиями, обусловленными структурой ударных волн. В случае же фотонного двигателя природа светящихся узлов другая - они обусловлены последовательными процессами аннигиляции, а их зелено-голубой свет в первом узле постепенно меняется до бледно-фиолетового в последнем. Таким образом, прямоточный межзвездный фотонный двигатель вышел на режим. Заметно возросла тяга. У экипажа пропало ощущение невесомости.
Прошло несколько суток, и околоземные службы наблюдения обнаружили вышедшие из давно намеченной точки безбрежного космоса долгожданные рентгеновские лучи-свидетели состоявшегося запуска фотонного двигателя и начала первого межзвездного полета.
Возникает вопрос - насколько реально создание описанного выше аппарата с фотонным двигателем. Чтобы ответить на него, необходимо сказать о потребности человечества в межзвездных полетах. Такая потребность есть. О ней в настоящее время много пишут не только в популярной, но и в научной литературе. "Погоня за сетом и пространством" всегда сопровождала и будет сопровождать развитие человечества. Возникновение сначала идей, затем проектов и, наконец, реальных конструкций фотонных ракет следует рассматривать как следствие этой потребности в межзвездных перелетах. Возможности же создания таких ракет будут находится в тесной зависимости от успехов фундаментальных и прикладных исследований по термоядерному синтезу, высокотемпературной сверхпроводимости, методов получения и хранения антивещества и т.п. Особое место в этих прогнозах будет иметь результаты фундаментальных работ по теории поля, элементарных частиц, особенно кварков и лептонов, а также по теории возникновения и развития Вселенной, поскольку оказывается, что изучение процессов, имевших место при рождении нашей Вселенной, может ответить на многие вопросы о строении мира, начиная от элементарных частиц и полей и кончая возможностью существования антимиров.
Ивенс
 

Re: ФОТОННАЯ РАКЕТА

Сообщение RUSpilot » 11 дек 2011, 23:06

Ртутный вихревой двигатель виманы-не есть этот самый термоядерный двигатель?
Водитель сказал, что развезёт всех. Развезло всех, особенно водителя
Аватара пользователя
RUSpilot
участник форума
 
Сообщения: 195
Зарегистрирован: 02 дек 2011, 22:25
Откуда: Там, где делают пулемёты

Re: ФОТОННАЯ РАКЕТА

Сообщение RUSpilot » 11 дек 2011, 23:22

Ртутный вихревой двигатель виманы - не есть ли этот самый термоядерный двигатель?

Ртутный двигатель - система с внутренней энергией. Достаточно достичь скорости ведущего вихря из перегретых ртутных паров 11,2 км/с, как система перейдёт в режим самостабилизации (антигравитации, если так удобней), а если придать скорость свыше 300 000 км/с то система перейдёт на сверхсветовые скорости.
Водитель сказал, что развезёт всех. Развезло всех, особенно водителя
Аватара пользователя
RUSpilot
участник форума
 
Сообщения: 195
Зарегистрирован: 02 дек 2011, 22:25
Откуда: Там, где делают пулемёты

Фотоный звездолёт - схема

Сообщение Ивенс » 25 фев 2012, 18:36

МЕЖЗВЕДНОЕ ПУТЕШЕСТИЕ.
АСПЕКТЫ ПРОБЛЕМЫ
http://go2starss.narod.ru/pub/012_ZBD_001.jpg
1 -узел крепления отражателя пульсирующего термоядерного двигателя; 2 - сопло; 3 - контейнер с системой подачи в камеру двигателя левитаторов с антивеществом; 4 - левитатор с антивеществом; 5 - продукты первичной реакции аннигиляции антивещества; 6 - левитатор с антивеществом в рабочей камере двигателя; 7 -жилые, леченые и производственные отсеки; 8 - антенны дальней радиосвязи; 9 - рабочие тоннели; 10 - хранилища компонентов и оранжереи (жидкий кислород, жидкий азот, жидкий водород, жидкий гелий, вода, овощная оранжерея, грибная оранжерея и т.д.); 11- топливные элементы; 12 - инжекторы электронов в отражательный диск; 13 - регенераторы воды и воздуха; 14 - информационные системы, буферные батареи и аккумуляторы; 15 - биологическая защита; 16 - ядерно-энергетическая силовая установка; 17 - ускоритель-ионизатор встречного потока; 18 - игла массозаборника.
http://go2starss.narod.ru/pub/012_ZBD_002.jpg http://go2starss.narod.ru/pub/012_ZBD_003.jpg

СХЕМА РАБОТЫ ПРЯМОТОЧНОГО ФОТОННОГО ДВИГАТЕЛЯ
1 - протонно-электронный луч, ионизирующий встречный поток межзвездного вещества; 2 - условное изображение магнитных силовых линий; 3 - диск, образованный электронами, эжектируемыми тангенциально с внешней поверхности массозаборника в плоскости перпендикулярной направлению полета; 4 - начальная зона аннигиляции, характерная не только фотонным излучением, но и образованием нейтральных в смысле электрического заряда протн-антипротнных и электрон-позитронных пар, малое время жизни которых (10-10 с). приводит к тому, что здесь же в реакционной камере образуются нейтральные пи0-мезоны (время жизни 10-12 с) и p0-мезоны (время жизни 10-10 с).
При скорости полета звездолета 10 000 км/с упомянутые частицы движутся со скоростями примерно во столько раз большими, во сколько меньше их масса. Но переместиться они успевают всего на несколько миллиметров, образуя при этом гамма-излучение и электронно-позитронные пары. Здесь же образуются заряженные p± мезоны, время жизни которых 2.6х10-8 с, а скорость составляет около 2х105 км/с, следовательно, они проходят путь тоже не очень большой - не более нескольких метров, образуя µ0-мезоны, нейтрино и антинейтрино;
5 - зона аннигиляции µ0 -мезонов и образования электронно-позитронных пар. Поскольку их время жизни составляет 2.2х10-6 с, а скорость из движения приближается к световой, они успевают переместиться на расстояние порядка 220 м, что и отражено на схеме.
Иное дело, когда звездолет разгонится до скорости 105 км/с. В этом случае расстояние от кромки сопла до зоны их аннигиляции будет существенно больше, так как надо будет учитывать эффекты теории относительности; 6 -зона аннигиляции электронов с позитронами с образованием гамма-квантов заключает процесс разгона реактивной фотонной струи.
Поскольку конечными продуктами аннигиляции являются гамма-кванты и нейтрино (они образуются и на всех промежуточных стадиях), то скорость реактивной струи равна скорости света. Отсюда и название двигателя - прямоточный фотонный двигатель.
http://go2starss.narod.ru/pub/012_ZBD_004.jpg Так выглядит прямоточный фотонный звездолет, идущий в режиме разгона.
Ивенс
 

Re: Фотоный звездолёт - схема

Сообщение НСкрипкин » 25 фев 2012, 19:53

Красивая схема. Давно мне нравится, но как и всё идеальное работает только в идеальном межзвёздном прстранстве (без метеоритов), да и тормоза в ней нет :)
Аватара пользователя
НСкрипкин
участник форума
 
Сообщения: 1725
Зарегистрирован: 18 мар 2011, 23:02
Откуда: г.Волгоград

Re: Фотоный звездолёт - схема

Сообщение Ивенс » 26 фев 2012, 19:14

Гигантская могила с маленькой жилой площадью в носу корабля.
Конец всему может произойти в любую минуту!
Ивенс
 

Re: Фотоный звездолёт

Сообщение НСкрипкин » 09 фев 2013, 17:53

Есть ещё один путь преодоления межзвёздных пространств - это увеличение продолжительности человеческой жизни. В этом случае нет никаких препятствий начинать межзвёздное путешествие даже на современном технологическом уровне, да в принципе автоматы его уже и начали. Остаётся только снабдить межзвёздный корабль-планетоид достаточным уровнем комфорта, что бы скрасить скуку тысячелетнего путешествия от звезды к звезде :)
Аватара пользователя
НСкрипкин
участник форума
 
Сообщения: 1725
Зарегистрирован: 18 мар 2011, 23:02
Откуда: г.Волгоград

Обезьяна к звездам не полетит

Сообщение Ивенс » 09 фев 2013, 20:38

"Межзвездный полет- это настолько грандиозный проект, что даже трудно полностью представить себе все возможные аспекты. Прежде всего это, разумеется, решение очень и очень трудных научно-технических задач. Это разработка принципиально новых технологий и материалов. Это переход всей земной энергетики на совершенно новые и эффективные виды энергии. На керогазе к звездам не полетишь. Это новые исследования в области биологии, биохимии, биофизики, генетики. Для осуществления такого проекта потребуются новые исследования и открытия в астрофизике, квантовой механике. Потребуются кропотливые исследования свойств пространства, времени, гравитации.
Нужно ли говорить о том, что реализация такого проекта может быть «по зубам» лишь всему человечеству в целом. Даже самая экономически и технологически развитая страна по отдельности с этим справиться не сможет. Максимум, что она еще сумеет осилить – это межпланетная пилотируемая экспедиция к ближайшим нашим соседям – Марсу или Венере. Не более того. И даже это под большим знаком вопроса. Все это вынуждает меня относиться к вопросу о межзвездных перелетах с большим скептицизмом. Межзвездные полеты станут возможными только при условии, что все человечество объединится в единое целое."- http://www.seti-ceti.ru/209
Ивенс
 

Re: Фотоный звездолёт

Сообщение doktornic » 09 фев 2013, 20:48

Ивенс, Вы совершенно правы. Только с небольшой добавкой - "Межзвездные полеты станут возможными только при условии, что все человечество объединится в единое целое." "И откроет совершенно новые знания и технологии".
doktornic
участник форума
 
Сообщения: 2488
Зарегистрирован: 11 дек 2011, 14:19

Re: Фотоный звездолёт

Сообщение Петр » 09 фев 2013, 21:23

НСкрипкин писал(а):нет никаких препятствий начинать межзвёздное путешествие даже на современном технологическом уровне ... снабдить межзвёздный корабль-планетоид достаточным уровнем комфорта, чтобы скрасить скуку тысячелетнего путешествия от звезды к звезде :)
Сценарий такого полета был описан еще в 1953 году!
В юности, когда я увлекался фантастикой, кажется в журнале «Знание-Сила" я читал один фантастический рассказ. Космический корабль запущен с Земли к другой звезде, за время полёта должно смениться сорок поколений людей. Корабль имеет полностью автоматическое управление полётом и системами жизнеобеспечения. Более тысячи лет Корабль несётся сквозь чёрно-звёздный океан Вселенной. Через несколько поколений люди полностью утратили все научные знания, грамотность и адекватные представления о том, где они находятся и зачем. Книги были уничтожены, грамотность и научные знания были объявлены вредными и наказуемыми. Знания о начале полёта и его цели были заменены Мифом о Корабле как центре мира и источнике жизни. Корабль и картины с изображениями земных пейзажей стали объектами религиозного поклонения. Но рано или поздно любое путешествие заканчивается. Главный герой узнал всю правду о корабле и наши победили.
Этот научно-фантастический рассказ назывался «Поколение, достигшее цели». А теперь благодаря интернету его можно еще раз почитать. Оказывается, его написал еще в 1953 году американский писатель Клиффорд Саймак.
Прочитать рассказ http://www.testpilot.ru/espace/bibl/fan ... ie/01.html
Скачать http://royallib.ru/book/povesti/pokolen ... tseli.html
Петр
участник форума
 
Сообщения: 1401
Зарегистрирован: 13 мар 2011, 20:40

След.

Вернуться в Наша наука



Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 32

@Mail.ru